Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization
نویسندگان
چکیده
Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials.
منابع مشابه
Investigation of Tantalum Recycling by Electron Beam Melting
Investigations are carried out and obtained experimental and theoretical data for tantalum scrap recycling by electron beam melting (EBM) is presented in this paper. Different thermal treatment process conditions are realized and results are discussed. A chemical analysis is performed and refining mechanisms for electron beam (EB) refining of Ta are discussed. For the performed experiments the ...
متن کاملTemperature Distribution of Particles in a Laser Beam
This article studies the particle temperature distribution depending on the laser radiation power and the particle’s trajectory and velocity. The uneven heating of particles moving in the laser radiation field is identified. The regimes of laser heating without melting, with partial melting, and with complete particle melting are considered.
متن کاملMelting and Refining Technology of High-temperature Steels and Superalloys a Review of Recent Process Developments
The recent increase in number and capacity of special melting techniques and refi ning processes is related to the continuing growth of high-temperature alloy usage in wrought and cast form and to the fact that the metallurgical and technological potential of conventional melting and casting processes have been largely exhausted. The evol ution of the major melting processes for high-performanc...
متن کاملOptimization of Process Parameters of Electron Beam Welded Fe49Co2V Alloys
Electron beam welding has shown a remarkable job in the space industry for welding of components. It is performed under a vacuum environment that eliminates foreign matter such as hydrogen, oxygen, and other gases. Joining of similar and dissimilar materials is the main advantage of electron beam welding with high depth to width ratio as well as sharp focus at the point where parts are to be we...
متن کاملElectron beam irradiation method to change polypropylene application: Rheology and thermomechanical properties
Irradiation of polymers is one of the most effective and economical methods for modifying their properties and for changing their applications. In this study, an extrusion grade polypropylene (PP) was treated by electron beam irradiation to produce a PP suitable for injection molding. Irradiation was carried out at different doses (0-80 kGy) under atmosphere air and at ambient temperature. Melt...
متن کامل